知乎上关于“如何入门/转行机器视觉?”的话题,普遍有几万到十几万的阅读,而且也常常有学员在公众号后台向我们抛出类似的问题。可见,很多0-1岁的视觉新人对此是有困扰和疑惑的。
机器视觉工程师主要分机器视觉应用工程师和机器视觉算法工程师,从市场需求来说机器视觉应用工程师需求量更大,那么想成为一名机器视觉应用工程师需要掌握什么知识呢?下面小编就把学习的知识点
和方向分享给想入行机器视觉的朋友们。
1、halcon软件提供的是快速的图像处理算法解决方案,不能提供相应的界面编程需求,需要和VC++结合起来构造MFC界面,才能构成一套完成的可用软件。
2、机器视觉在工业上的需求主要有二维和三维方面的
二维需求方面有:⑴识别定位;(2)OCR光学字符识别;(3)一维码、二维码识别及二者的结合;(4)测量类(单目相机的标定);(5)缺陷检测系列;(6)运动控制,手眼抓取(涉及手眼标定抓取等方面)
三维需求方面:(1)摄像机双目及多目标定(2)三维点云数据重构
3、要成为一名合格的机器视觉工程师必须具备以下三个方面的知识
(1)图像处理涉及以下几大领域:
A、图像处理的基本理论知识(图像理论的基础知识)
B、图像增强(对比度拉伸、灰度变换等)
C、图像的几何变换(仿射变换,旋转矩阵等)
D、图像的频域处理(傅里叶变换、DFT、小波变换、高低通滤波器设计)
E、形态学(膨胀、腐蚀、开运算和闭运算以及凸壳等)
F、图像分割(HALCON里的Blob分析)
G、图像复原
H、运动图像
I、图像配准(模板匹配等)
J、模式识别(分类器训练,神经网络深度学习等)
比较好的参考书籍有
经典教材:冈萨雷斯的《数字图像处理》及对应的MATLAB版
杨丹等编著《MATLAB图像处理实例详解》
张铮等编著《数字图像处理与机器视觉——Visual C++与MATLAB实现》
左飞编著的《数字图像处理:原理与实践(MATLAB版)》
左飞编著的《数字图像处理技术详解与Visual C++实践》
谢凤英编著的《Visual C++数字图像处理》
《精通系列·精通Visual C++数字图像处理典型算法及实现(第2版)》
(2)软件编程功底
具备C,C++,C#及MFC界面开发的功底
A、C语言的学习主要看谭浩强写的C语言相关知识
B、C++主要看C++ primer plus书籍
C、MFC的学习主要看孙鑫编写的《VC++深入详解》这本书及相应的视频教程,并在VC++6.0软件或VS2010等软件上编写程序和实践。
D、C#可以看书籍《C#从入门到精通》、《Head First C#》、《C#入门经典》、
《C#图解教程》、《C#高级编程》、《.Net Frameword 高级编程》、《CLR via C#》
(3)光学知识:
主要阅读书籍《工程光学》、重点放在几何光学方面,了解成像原理及相应的光路分析,知道光源的特性、镜头分辨率、相机分辨率等方面的知识。
光学知识主要在你设计方案时相机、光源、镜头等选型时起到关键作用。
软件功底的作用是软件的架构设计分析,架构包括UI层设计、业务逻辑层开发、数据层开发。
HACLON主要完成图像处理算法的实现。
目前市场上工业领域中主流的图像算法处理软件有HALCON, NIvisionpro, opencv
学习HALCON最重要的是学习其中的方法、流程和套路
4、HALCON主要完成图像算法的流程套路如下:
特征提取总结:
1、几何特征(面积、周长、矩形度)2、纹理特征(与灰度相关,如熵、能量值)
3、颜色特征4、概率特征5、算子描述特征 6、Hough特征(梯度直方图特征)
做机器视觉的项目,拿到项目时一般遵循如下流程:
第一步:需求分析,建立相应的方案
第二步:算法流程规划及业务逻辑设计
第三步:模块化编程及集成化实现
第四步:调试,根据反馈结果来不断的修改程序Bug,达到客户需求,最后交付客户及软硬件操作文档。
学习机器视觉的好方法:
1、学习机器视觉一定要结合项目实战,在实践中学习总结经验教训,系统化学习所需知识。
2、补充一定的C++和c#知识,进行VS联合开发,客户现场的学习和现场调试,不断学习示例分析,掌握方法套路流程。
3、根据实际问题,学习模块调用,按照方法套路学习。
4、最好是先用HALCON实现图像处理部分,然后在VS2010开发软件中利用MFC图形界面实现出来,实践学习是最好的方法。
机器视觉学习的发展趋势是结合神经网络、深度学习进行相应的人工智能机器视觉开发。
文章来源:网络收集,犀灵机器人机器视觉培训http://www.lingxixueyuan.com整理发布